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We consider the solution of the equation ṙ (t) = W (r (t)), r (0) = r0 > 0 where W (·) is
a fractional Brownian motion (f.B.m.) with the Hurst exponent α ∈ (0, 1). We show
that for almost all realizations of W (·) the trajectory reaches in finite time the nearest
equilibrium point (i.e. zero of the f.B.m.) either to the right or to the left of r0, depending
on whether W (r0) is positive or not. After reaching the equilibrium the trajectory stays
in it forever. The problem is motivated by studying the separation between two particles
in a Gaussian velocity field which satisfies a local self-similarity hypothesis. In contrast
to the case when the forcing term is a Brownian motion (then an analogous statement
is a consequence of the Markov property of the process) we show our result using
as the principal tools the properties of time reversibility of the law of the f.B.m., see
Lemma 2.4 below, and the small ball estimate of Molchan, Commun. Math. Phys. 205
(1999) 97–111.

KEY WORDS: Passive tracer; fractional Brownian motion; two point separation
function.

1. INTRODUCTION

In the passive tracer model, which is quite frequently used in statistical fluid
mechanics to describe motion of particles in a turbulent flow (see e.g. Refs. 5, 7,
or 10), the trajectory of a particle is given as a solution of the ordinary differential
equation

dx(t)

dt
= V (t, x(t)), x(0) = x0, (1.1)
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where the right hand side V : � × R × R
d → R

d is a random field defined over
a certain probability space (�,W, P). By E we shall denote the expectation
corresponding to the probability measure P. The principal task is to describe the
statistical properties of the flow of particles, given the statistics of the velocity
field V (t, x). Consider two particles whose trajectories xi (t), i = 1, 2 solve (1.1)
with the initial conditions xi (0) = x(0)

i , i = 1, 2. We wish to analyze the separation
between particles defined as r(t) := x2(t) − x1(t). It can easily be deduced that
the separation vector satisfies the following equation

dr(t)

dt
= V (t, r(t) + x1(t)) − V (t, x1(t)), r(0) = x(0)

2 − x(0)
1 . (1.2)

Introducing V q L (t, x) := V (t, x + x1(t)), the so-called quasi-Lagrangian velocity
field, we can rewrite (1.2) in the form

dr(t)

dt
= V q L (t, r(t)) − V q L (t, 0), r(0) = x(0)

2 − x(0)
1 . (1.3)

One can inquire then about statistical properties of the separation vector assum-
ing that the statistics of the quasi-Lagrangian field are known. Various results
concerning the behavior of r(t) are presented in the extensive paper.(2)

Assume now that d = 1. One-dimensional models are often used e.g. to de-
scribe transport in isotropic flows. Suppose furthermore that the quasi-Lagrangian
velocity is a time independent, zero mean, Gaussian random field that satisfies
the local self-similarity hypothesis, with a fixed Hurst exponent α. Its covariance
function can be described by

R(x) := E[V q L (x)V q L (0)] = E0

∫
R

eikx

|k|1+2α
1[L−1

0 ,�−1
d ](|k|) dk. (1.4)

Here L0, �d stand for the energy-containing and dissipative scales, respectively,
while E0 is a parameter that can be used to control the magnitude of the energy
flux. The scale separation satisfies L0/�d → +∞, as the Reynolds number of the
flow Re → +∞ (in fact one can argue that for α = 1/3 the ratio L0/�d is at least
of the order of magnitude Re3/4, see e.g. (7.18) of Ref. 5). The corresponding pair
separation function is given by r�d ,L0 (t)—the solution of equation

dr�d ,L0 (t)

dt
= W�d ,L0 (r�d ,L0 (t)), r�d ,L0 (0) = r0. (1.5)

Here W�d ,L0 (x) := [V q L (x) − V q L (0)]. By verifying the convergence of the re-
spective covariance functions it can be shown that the laws of W�d ,L0 (x) converge
weakly, as �d � 1 � L0, to the law of a fractional Brownian motion (f.B.m.)
W (x) with the Hurst exponent α and variance cα . The above means that W (x) is
a Gaussian process which satisfies

W (0) = 0, E(W (x) − W (y))2 = cα|x − y|2α
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for all x, y > 0. Here

cα = 4E0

∫ +∞

0

sin2(k/2)

k2α+1
dk.

The corresponding limiting pair separation process r (t) should satisfy therefore
(see Theorem 1.2 below for a rigorous derivation) the equation

dr (t)

dt
= W (r (t)), r (0) = r0 > 0, (1.6)

were W (x) denotes the f.B.m. described above. The Eq. (1.6) is our main object
of interest in this paper. Following the above motivation, we study it only for
x > 0, but the results could be extended to the whole real line with an appropriate
definition of W (x) for x negative.

What we set out to prove in this article is the almost sure (a.s.) uniqueness
result for the solutions of (1.6). Informally speaking the behavior of solutions can
be described as follows. Let r0 > 0 be fixed. Suppose also that W (r0) > 0. We
define then

ρr0 := inf [r > r0 : W (r ) = 0] . (1.7)

When, on the other hand W (r0) < 0 we set

ρr0 := sup [r < r0 : W (r ) = 0] . (1.8)

In case when W (r0) = 0, which is a probability zero event, we define by convention
ρr0 := r0. If r0 > 0 and W (r0) �= 0 then, as we show in Proposition 2.2, one has
0 ≤ ρr0 < +∞ a.s. The solution of (1.6) is uniquely determined by the equation

∫ r (t)

r0

dr

W (r )
= t, (1.9)

so long as W (r (t)) �= 0. In writing formula (1.9) we have adopted the usual conven-
tion that

∫ a
b f (x)dx = − ∫ b

a f (x)dx , when a < b. According to Proposition 2.5
below the trajectory r (t) must reach in finite time the point ρr0 a.s. After that time,
thanks to Proposition 2.7, the solution of (1.6) must stay at ρr0 for all the remaining
time.

To formulate the result rigorously let us introduce a strictly monotone function

F(r ) :=
∫ r

r0

dρ

W (ρ)
, (1.10)

It is well defined, by means of formula (1.10), for all those ω for which W (r0; ω) �=
0 and r belonging to an oriented interval [r0, ρr0 ). In case when W (r0; ω) = 0 we
shall simply set F(r ; ω) ≡ 0.
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Theorem 1.1. For any r0 > 0 we have

τ0 := F(ρr0−) < +∞, P − a.s. (1.11)

The Eq. (1.6) has a unique solution, given by the formula

r (t) =
{

F−1(t), t ∈ [0, τ0),
ρr0 , t ∈ [τ0,+∞),

when W (r0) �= 0.

In the special case when α = 1/2 and W (·) is a Brownian motion this result
can be proven very simply (for example using Itô stochastic calculus), but all such
simple proofs known to the authors rely, more or less explicitly, on the Markov
property of the process. Since the fractional Brownian motion no longer has the
Markov property we have to use a different approach. Our proof rests on a time
reversibility property of the process, see Lemma 2.4 and Theorem 2.3 and on the
small ball estimates of Ref. 9, see (2.17) below.

As an application of Theorem 1.1 we prove, see Sec. 3 below, the following
result that makes the formal passage from the separation process rL (t) to the
solution of (1.6) rigorous.

Theorem 1.2. The laws of processes r�d ,L0 (t), t ≥ 0, given by (1.5), converge
weakly on the space C[0,+∞), as �d � 1 � L0, to the law of the solution of
(1.6).

2. SOME PROPERTIES OF THE FRACTIONAL BROWNIAN MOTION

Suppose that u ∈ R. Define

σu := inf[x > 0 : W (x) = −u]. (2.1)

Lemma 2.1. Let A := [ω : σu(ω) < +∞ for all u ∈ R]. Then P[A] = 1.

Proof: Let u ∈ R and Au := [ω : σu < +∞]. The conclusion of the lemma
shall follow from the fact that

P[Au] = 1 for all u ∈ R. (2.2)

Indeed, (2.2) would certainly imply that

P[ω : σu < +∞ for all u ∈ Q] = 1. (2.3)

Since σu ≤ σv when either 0 ≤ u ≤ v, or v ≤ u ≤ 0, and the paths of the process
W are continuous, Eq. (2.3) implies the conclusion of the lemma. Suppose that
u �= 0 is such that P[Ac

u] = c > 0. With no loss of generality we may and shall
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assume that u > 0. Thanks to α-self similarity of the fractional Brownian motion,
i.e. the fact that the laws of W (x), x ≥ 0 and aαW (x/a), x ≥ 0 are identical for
all a > 0, we conclude that also P[Ac

aαu] = c > 0 for all a > 0. Hence,

P
[
M[0,1] = 0

] ≥ c > 0, (2.4)

where

M[x,y] := min
r∈[x,y]

W (r ). (2.5)

It is known, see e.g. Proposition 4 of Ref. 8, that M[0,1] has an absolutely continuous
law w.r.t. the Lebesgue measure, which clearly contradicts (2.4). This ends the
proof of (2.2) and, in consequence, concludes the proof of the lemma. �

Using the above lemma we obtain the following.

Proposition 2.2. Suppose that r0 > 0. Then, for ρr0 defined in (1.7) we have

ρr0 < +∞, P − a.s. (2.6)

Proof: The case W (r0) < 0 is obvious. We only need to be concerned with
the case W (r0) > 0. Consider then the f.B.m. given by W̃ (r ) := W (r + r0) −
W (r0), r ≥ 0. We emphasize here that, in contrast with the standard Brownian case,
this process is not independent of W (r ), r ∈ [0, r0]. Note that ρr0 = σ̃W (r0) − r0,
where σ̃u is defined as in (2.1) with the f.B.m. W (r ), r ≥ 0 replaced by W̃ (r ),
r ≥ 0. The result immediately follows then from Lemma 2.1. �

The main result of this section is the following.

Theorem 2.3. We have∫ v

−v

E

[∫ σu

0

dr

|u + W (r )|1[σu<X ]

]
du < +∞ (2.7)

for any v, X > 0, where 1[σu<X ] denotes the indicator function corresponding to
the event [σu < X ].

Proof: Suppose that � = C[0,+∞), M is its Borel σ -algebra, W is the law of
the f.B.m. and W (x ; ω) := ω(x) is the coordinate map. On the Borel σ -algebraB of
subsets of R × � we introduce a measure of infinite total mass µ := λ ⊗ W, where
λ is the standard one-dimensional Lebesgue measure. Likewise, for a given X > 0
we denote �X = C[0, X ] and write MX for the corresponding Borel σ -algebra.
Let πX : R × � → R × �X be given by πX (x, ω) := (x, ω|[0,X ]), where ω|[0,X ] is
the restriction of ω to [0, X ]. Then µX := µπ−1

X defines a measure on the Borel
σ -algebra of subsets of R × �X .
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To prove the assertion of the theorem it suffices to show that for any u > 0.
∫ [∫ X

0

1[0,σu ](r )dr

u + W (r )

]
1[σu<X ]1[0,v](u)µX (du, dω) < +∞ (2.8)

for any v, X > 0. The statement with 1[0,v] replaced by 1[−v,v] follows from the
symmetry of the law of the f.B.m. under the spatial reflection.

The integral in (2.8) is clearly bounded from above by
∫ [∫ X

0

1[0,σu ](r )dr

u + W (r )

]
1[0,v](u)µX (du, dω). (2.9)

For any r ≤ X we let

W(w, r, v) := µX [(u, ω) : 0 ≤ u + W (r ; ω) ≤ w, r ≤ σu(ω), 0 ≤ u ≤ v].
(2.10)

To prove that the expression in (2.9) is bounded it suffices only to show that
∫ X

0
dr

∫ +∞

0

1

w
W(dw, r, v) < +∞, (2.11)

Indeed, for any g : [0,+∞) → R that is smooth and limw→∞ g(w) = 0 one can
easily prove, using integration by parts formula, that

∫ [∫ X

0
g(u + W (r ))1[0,σu ](r )dr

]
1[0,v](u)µX (du, dω)

=
∫ X

0
dr

∫ +∞

0
g(w)W(dw, r, v). (2.12)

Then choosing an increasing sequence of smooth, positive functions gn(w) tending
to 1/w on [0,+∞), as n → +∞, and using Beppo Levi monotone convergence
theorem one can conclude that (2.11) implies finiteness of the expression in (2.9).
Moreover, the expressions appearing in (2.9) and (2.11) must be equal.

The crucial property of measure µX that we are going to apply in proving
(2.11) is its invariance under the time reversal transformation. It is expressed by
the following.

Lemma 2.4. Suppose that X > 0 and g : �X → R is a function integrable with
respect to the measure µ. Let also RX : �X → �X be given by RX (ω)(x) :=
ω(X − x), x ∈ [0, X ]. Then,

∫
g(u + RX (ω))µX (du, dω) =

∫
g(u + ω)µX (du, dω). (2.13)

Here, (u + ω)(x) := u + ω(x), x ∈ [0, X ], u ∈ R.
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We postpone for a moment the proof of this result in order to finish proving
the theorem. With the above lemma we can write for any r ≤ X

W(w, r, v) = µX

[
(u, ω) : 0 ≤ u + W (r ; ω) ≤ w,

inf
y∈(0,r )

(u + W (y; ω)) > 0, 0 ≤ u ≤ v
]

= µr

[
(u, ω) : 0 ≤ u + W (r ; ω) ≤ w,

inf
y∈(0,r )

(u + W (y; ω)) > 0, 0 ≤ u ≤ v
]

(2.13)= µr

[
(u, ω) : 0≤u ≤w, inf

y∈(0,r )
(u + W (r − y; ω)) > 0,

0 ≤ u + W (r ; ω) ≤ v
]

=
∫ w

0
W

[
ω : inf

y∈(0,r )
(u + W (y; ω)) > 0,

0 ≤ u + W (r ; ω) ≤ v
]
du. (2.14)

Using (2.14) we may estimate from above the expression appearing in (2.11) by∫ X

0
dr

∫ +∞

0

dw

w
W

[
ω : min

y∈[0,r ]
(w + W (u; ω)) ≥ 0, 0 ≤ w + W (r ; ω) ≤ v

]
.

(2.15)
The probability in (2.15) can be estimated from above by

min
{
W

[
ω : min

y∈[0,r ]
(w + W (y; ω)) ≥ 0

]
, W[W (r ) ∈ [−w, v − w]]

}

The first term under the minimum equals

W

[
ω : min

y∈[0,r ]
W (y; ω) ≥ −w

]
= W

[
ω : max

y∈[0,r ]
W (y; ω) ≤ w

]
. (2.16)

According to Lemma 3, p. 105 of Ref. 9, for any ε > 0 one can find a constant
C > 0 such that the right hand side of (2.16) is estimated from above by

Cw−1+ε+1/αr−1−ε+α, ∀r, w > 0. (2.17)

We estimate the second term for w ≥ 2v ≥ 0 as follows

W[W (r ) ∈ [−w, v − w]] = 1√
2πr2α

∫ v−w

−w

exp

{
− u2

2r2α

}
du

≤ 1√
2πr2α

∫ −w/2

−∞
exp

{
− u2

2r2α

}
du
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= 1√
2π

∫ +∞

w/(2rα )
exp

{
−u2

2

}
du

≤
√

2

π

rα

w
exp

{
− w2

8r2α

}
≤

√
2

π

rα

w
. (2.18)

The penultimate estimate follows from the elementary inequality
∫ +∞

x e−y2/2

dy ≤ x−1e−x2/2 for x > 0 that can be directly verified (note that
∫ +∞

x ye−y2/2

dy = e−x2/2, see also exercise 4, p. 212 of Ref. 3). Choosing ε ∈ (0, α) and esti-
mating the integrand in (2.15), using (2.17) for w ∈ (0, 2v) and (2.18) for w ≥ 2v,
we conclude that the integral can be bounded from above by

C

∫ X

0

∫ 2v

0
w−2+∈+1/αr−1−∈+αdr dw +

√
2

π

∫ X

0

∫ +∞

2v

w−2rαdrdw < +∞,

(2.19)
as claimed.

The Proof of Lemma 2.4. It suffices to show that for any n ≥ 0, functions
g0, ..., gn ∈ C∞

0 (R), arguments 0 = x0 ≤ x1 < · · · xn ≤ X we have
∫ +∞

−∞
E[g0(v + W (x0))g1(v + W (x1)) . . . gn(v + W (xn))] dv

=
∫ +∞

−∞
E[g0(v + W (X ))g1(v + W (X − x1)) . . . gn(v + W (X − xn))]dv.

(2.20)

We can rewrite the right hand side of the above equation using the Fourier repre-
sentation for functions gi :

∫
· · ·
R

n+1

∫
ĝ0(k0)ĝ1(k1) . . . ĝn(kn)E

⎡
⎣exp

⎛
⎝i

n∑
p=0

kpW (X − x p)

⎞
⎠

⎤
⎦

×
⎡
⎣

∫
exp

⎛
⎝iv

n∑
p=0

kp

⎞
⎠ dv

⎤
⎦ dk0 . . . dkn

=
∫

· · ·
R

n

∫
ĝ0

⎛
⎝−

n∑
p=1

kp

⎞
⎠ ĝ1(k1) . . . ĝn(kn)

× E

⎡
⎣exp

⎛
⎝i

n∑
p=1

kp[W (X − x p) − W (X )]

⎞
⎠

⎤
⎦ dk1 . . . dkn. (2.21)
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To obtain the last equality we used the fact that the last integral appearing on
the left hand side of (2.21) equals δ(

∑n
p=0 kp). Using the fact that the laws of

W (X − x) − W (X ), x ∈ [0, X ] and W (x), x ∈ [0, X ] coincide we conclude that
the right hand side of (2.21) equals

∫
· · ·
R

n

∫
ĝ0

⎛
⎝−

n∑
p=1

kp

⎞
⎠ ĝ1(k1) . . . ĝn(kn)E

⎡
⎣exp

⎛
⎝i

n∑
p=1

kpW (x p)

⎞
⎠

⎤
⎦ dk1 . . . dkn

=
∫

· · ·
R

n

∫
ĝ0(k0)ĝ1(k1) . . . ĝn(kn)

× E

⎡
⎣exp

⎛
⎝i

n∑
p=1

kpW (x p)

⎞
⎠

⎤
⎦

⎡
⎣

∫
exp

⎛
⎝iv

n∑
p=0

kp

⎞
⎠ dv

⎤
⎦ dk0 . . . dkn. (2.22)

The right hand side of Eq. (2.21) is equal to the left hand side of (2.20). �

As a direct consequence of Theorem 2.3 we have the following

Proposition 2.5. Suppose that r0 > 0 is such that W (r0) �= 0. Then,∫ ρr0

r0

dr

W (r )
< +∞, P − a.s. (2.23)

Proof: We show that both

1[W (r0)>0]

∫ ρr0

r0

dr

W (r )
< +∞, P − a.s. (2.24)

and

1[W (r0)<0]

∫ ρr0

r0

dr

W (r )
< +∞, P − a.s. (2.25)

Proof of (2.24). In view of Lemma 2.1 in order to prove (2.24) it suffices only
to show that for any X > 0

1[0<W (r0),ρr0 <X ]

∫ ρr0

r0

dr

W (r )
< +∞, P − a.s. (2.26)

Recall that W̃ (r ) := W (r + r0) − W (r0), r ≥ 0 is a f.B.m. whose law coincides
with that of W (·). For any 0 ≤ x ≤ y we denote by Fx,y the σ -algebra generated
by W̃ (r ), r ∈ [x, y]. By the orthogonal projection theorem the random variable
W (r0) can be uniquely decomposed as a sum of zero-mean Gaussian random
variables, see e.g. Theorem 10.1 p. 181 of Ref. 11, M(ω) + S(ω), where M(ω)
is F0,X−r0 —measurable and S(ω) is independent of F0,X−r0 . Let � := ES2. The
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conditional law of r.v. W (r0) w.r.t. F0,X−r0 is therefore Gaussian with the mean
M(ω) and variance �. �

Lemma 2.6. We have � > 0.

Proof: If � = 0, then W (r0) is measurable with respect to the σ -algebra
generated by the random variables W (x) − W (r0), where r0 ≤ x ≤ X . Hence
W (r0; ω) = f (ω(·) − W (r0; ω)), W-a.s., where f : C[r0, X ] → R is Borel mea-
surable. Let T : C[r0, X ] → C[r0, X ] be given by T (ω)(x) := ω(x) + 1. Since
the interval [r0, X ] does not contain zero, the measure W ◦ T −1 is equivalent
(i.e. mutually absolutely continuous) to W. This is an immediate consequence
of the Girsanov theorem for the fractional Brownian motion (Ref. 4, Theo-
rem 4.9, p. 25), where we choose a drift K H (s, t) = u(s) so that

∫ r0

0 u(s) = 1
and u(s) ≡ 0 for s ∈ [r0, X ]. Hence, in particular, we must have W (r0; T (ω)) =
f (T (ω)(·) − W (r0; T (ω))). Since T (ω)(·) − W (r0; T (ω)) = ω(·) − W (r0; ω), this
would imply W (r0) = W (r0) + 1 with probability one—a contradiction. �

Now, let us return to the proof of (2.24). In view of (2.26) it is enough to
show that for any positive integer m and X > 0 we have

E

[∫ σ̃W (r0)

0

dr

W (r0) + W̃ (r )
, σ̃W (r0) < X − r0, |M(ω)|≤n, 0<W (r0) ≤ m

]
<+∞.

(2.27)
We recall that σ̃u is defined for the f.B.m. W̃ (r ) by (2.1). This is however an
easy consequence of (2.7) since conditioning upon F0,X−r0 we can rewrite the
expectation on the left hand side of (2.27) as being equal to

E

[∫ m

0
gM(ω),�(v)dv

∫ σ̃v

0

dr

v + W̃ (r )
, σ̃v < X − r0|M(ω)| ≤ n

]

≤ Cn

∫ m

0
E

[∣∣∣∣
∫ σ̃v

0

dr

v + W̃ (r )

∣∣∣∣ , σ̃v < X − r0

]
dv < +∞ (2.28)

by virtue of Theorem 2.3. Here, gM,� is the normal density with mean M and
variance �. Thus, we conclude the proof of (2.24). �

Proof of (2.25). In this case we introduce the f.B.m. Ŵ (r ) := W (r0 − r ) −
W (r0), r ∈ [0, r0] and the corresponding stopping time σ̂u defined for an arbitrary
u ∈ R via (2.1) where W (·) is replaced by Ŵ (·). We shall also introduce F̂x,y, 0 ≤
x ≤ y ≤ r0 the filtration of σ -algebras corresponding to Ŵ (·). Let k be a positive
integer. The conditional law of r.v. W (r0) w.r.t. F̂0,r0−1/k is therefore Gaussian
with the mean M̂(ω) and variance Ŝ(ω). Arguing in the same manner as in the
proof of Lemma 2.6 we convince ourselves that �̂ := EŜ2 > 0. Note also that
[σ̂W (r0) = r0] = [ρr0 = 0] is contained in [maxr∈[0,r0] W (r ) = 0], which, as has
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been already observed, is a null event (see the remark below (2.5)). It is enough
therefore to show that for any positive integers k, m and n we have

E

[∫ σ̂W (r0)

0

dr

|W (r0) + Ŵ (r )| , σ̂W (r0) ≤r0− 1

k
, |M̂(ω)|≤n,−m ≤W (r0)<0

]
<+∞.

(2.29)
This integral can be however written as

E

[∫ 0

−m
gM̂(ω),�̂(v)dv

∫ σ̂v

0

dr

|v + Ŵ (r )| , σ̂v < r0 − 1

k
, |M̂(ω)| ≤ n

]

≤ Cn

∫ 0

−m
E

[∣∣∣∣
∫ σ̂0

0

dr

v + Ŵ (r )

∣∣∣∣, σ̂v < r0

]
dv < +∞ (2.30)

by virtue of Theorem 2.3. This finishes the proof of (2.25) and thus concludes the
proof of the proposition. �

Proposition 2.7. Suppose that r0 > 0 and ε > 0. Let

A(r0, ε) := [ω : W (r0)>0,W (·) changes sign infinitely often in [ρr0 ,ρr0 +ε]].

(2.31)
and

B(r0, ε) := [ω : W (r0)<0, W (·) changes sign infinitely often in (ρr0 −ε, ρr0 )].

(2.32)
Then P[A(r0, ε)] = P[B(r0, ε)] = 1.

Proof: Let

A(1)(r0, ε) := {ω : W (·) changes sign finitely many times in [ρr0 , ρr0 + ε]}
∩{W (r0) > 0}

Note that

A(1)(r0, ε) ⊂
⋃

r≥r0,r∈Q

(Dr ∪ Er )

where

Dr :=
[
ω : min

u∈[r0,r ]
W (u) = 0

]

and

Er :=
[
ω : max

u∈[r0,r ]
W (u) = 0

]

According to a general criterion for absolute continuity of extrema of Gaussian
process, see Ref. 13, we have P[Dr ] = P[Er ] = 0 for all r ≥ r0, r ∈ Q and
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we obtain that P[A(1)(r0, ε)] = 0. Hence (2.31) follows. The proof of (2.32) is
analogous. �

3. PROOFS OF THEOREMS 1.1 AND 1.2

Proof of Theorem 1.1. We consider only the case when W (r0) > 0, the case
W (r0) < 0 can be concluded via the same argument. Note that the solution r (t)
of (1.6) is determined uniquely for t ∈ [0, τ0) (cf. (1.11)) from (1.9). According
to Proposition 2.5 we have τ0 < +∞ a.s. and r (τ0) = ρr0 . In addition, since the
fractional Brownian motion W (·) changes sign infinitely often to the right of ρr0

the only solution of (1.6) that starts at τ0 from ρr0 must be a constant trajectory
r (t) ≡ ρr0 , t ≥ τ0. For, clearly, every such solution must satisfy r (t) ≥ ρr0 for
all t ≥ τ0 (since W is positive in an interval to the left of ρr0 ). On the event
ρr0 < q, where q is any real number, we have r (t) < q for t ≥ τ0, since by virtue
of Proposition 2.7, there is an interval (a, b), contained in (ρr0 , q), on which W (·)
is negative and hence no solution can ever reach b. Since this is true in particular
for all rational q-s, the conclusion of the theorem follows. �

The Proof of Theorem 1.2. Since the topology of weak convergence of proba-
bility measures is metrizable it suffices to prove that for any sequence Ln → +∞,
�m → 0+ the laws of r�m ,Ln (t), t ≥ 0 converge weakly on C[0 + ∞). As we have
already mentioned in Sec. 1 the sequence of the laws of WLn (x), x ≥ 0 con-
verges weakly, on C[0,+∞], to the law of the f.B.m. W (x), x ≥ 0. Using Sko-
rokhod representation theorem (see e.g. Ref. 1 Theorem 1.6.7 p. 70), one can
construct a probability space (�̃, W̃, P̃), a sequence of processes W̃Ln (x), x ≥ 0
and a process W̃ (x), x ≥ 0 defined over the probability space such that the law
of each W̃Ln (x), x ≥ 0 coincides with the law of WLn (x), x ≥ 0 and the law of
W̃ (x), x ≥ 0 agrees with the law of the f.B.m. W (x), x ≥ 0. Furthermore, the
processes W̃Ln (x), x ≥ 0 converge P̃-a.s. as n → +∞, to W̃ (x), x ≥ 0 uniformly
on compact intervals. Thanks to Theorem 1.1 the equation

dr̃ (t ; ω̃)

dt
= W̃ (r̃(t ; ω̃); ω̃), t ≥ 0, r̃ (0) = r0 > 0

has a unique solution for P̃-a.s. ω̃. Using a standard argument from the theory
of ordinary differential equations one can easily conclude that r̃Ln (t), t ≥ 0—the
solutions of

dr̃Ln (t)

dt
= W̃Ln (r̃Ln (t)), t ≥ 0, r̃Ln (0) = r0 > 0

converge P-a.s. to r̃ (t), t ≥ 0 uniformly on compact intervals. Since the laws of
r̃Ln (t), t ≥ 0 and those of rLn (t), t ≥ 0 are identical we conclude from this the
convergence of the laws of rLn (t), t ≥ 0 as claimed in the assertion of the theorem.
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